Files
clash-verge-rev/src-tauri/src/ipc/logs.rs
Tunglies e4c243de2d refactor: Replace tokio::spawn with AsyncHandler::spawn for better task management
- Replace direct tokio::spawn calls with AsyncHandler::spawn across multiple modules
- Improves task lifecycle management and error handling consistency
- Affected files:
  - src-tauri/src/cmd/network.rs
  - src-tauri/src/core/core.rs
  - src-tauri/src/core/event_driven_proxy.rs
  - src-tauri/src/enhance/tun.rs
  - src-tauri/src/ipc/logs.rs
  - src-tauri/src/ipc/memory.rs
  - src-tauri/src/ipc/monitor.rs
  - src-tauri/src/ipc/traffic.rs
  - src-tauri/src/utils/network.rs
  - src-tauri/src/utils/resolve.rs

This change provides better control over async task spawning and helps prevent
potential issues with unmanaged background tasks.
2025-08-22 03:41:14 +08:00

331 lines
9.9 KiB
Rust

use serde::{Deserialize, Serialize};
use std::{collections::VecDeque, sync::Arc, time::Instant};
use tauri::async_runtime::JoinHandle;
use tokio::{sync::RwLock, time::Duration};
use crate::{
ipc::monitor::MonitorData,
logging,
process::AsyncHandler,
singleton_with_logging,
utils::{dirs::ipc_path, logging::Type},
};
const MAX_LOGS: usize = 1000; // Maximum number of logs to keep in memory
#[derive(Debug, Clone, Deserialize, Serialize)]
pub struct LogData {
#[serde(rename = "type")]
pub log_type: String,
pub payload: String,
}
#[derive(Debug, Clone)]
pub struct LogItem {
pub log_type: String,
pub payload: String,
pub time: String,
}
impl LogItem {
fn new(log_type: String, payload: String) -> Self {
use std::time::{SystemTime, UNIX_EPOCH};
let now = SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
.as_secs();
// Simple time formatting (HH:MM:SS)
let hours = (now / 3600) % 24;
let minutes = (now / 60) % 60;
let seconds = now % 60;
let time_str = format!("{hours:02}:{minutes:02}:{seconds:02}");
Self {
log_type,
payload,
time: time_str,
}
}
}
#[derive(Debug, Clone)]
pub struct CurrentLogs {
pub logs: VecDeque<LogItem>,
// pub level: String,
pub last_updated: Instant,
}
impl Default for CurrentLogs {
fn default() -> Self {
Self {
logs: VecDeque::with_capacity(MAX_LOGS),
// level: "info".to_string(),
last_updated: Instant::now(),
}
}
}
impl MonitorData for CurrentLogs {
fn mark_fresh(&mut self) {
self.last_updated = Instant::now();
}
fn is_fresh_within(&self, duration: Duration) -> bool {
self.last_updated.elapsed() < duration
}
}
// Logs monitor with streaming support
pub struct LogsMonitor {
current: Arc<RwLock<CurrentLogs>>,
task_handle: Arc<RwLock<Option<JoinHandle<()>>>>,
current_monitoring_level: Arc<RwLock<Option<String>>>,
}
// Use singleton_with_logging macro
singleton_with_logging!(LogsMonitor, INSTANCE, "LogsMonitor");
impl LogsMonitor {
fn new() -> Self {
let current = Arc::new(RwLock::new(CurrentLogs::default()));
Self {
current,
task_handle: Arc::new(RwLock::new(None)),
current_monitoring_level: Arc::new(RwLock::new(None)),
}
}
pub async fn start_monitoring(&self, level: Option<String>) {
let filter_level = level.clone().unwrap_or_else(|| "info".to_string());
// Check if we're already monitoring the same level
// let level_changed = {
// let current_level = self.current_monitoring_level.read().await;
// if let Some(existing_level) = current_level.as_ref() {
// if existing_level == &filter_level {
// logging!(
// info,
// Type::Ipc,
// true,
// "LogsMonitor: Already monitoring level '{}', skipping duplicate request",
// filter_level
// );
// return;
// }
// true // Level changed
// } else {
// true // First time or was stopped
// }
// };
// Stop existing monitoring task if level changed or first time
{
let mut handle = self.task_handle.write().await;
if let Some(task) = handle.take() {
task.abort();
logging!(
info,
Type::Ipc,
true,
"LogsMonitor: Stopped previous monitoring task (level changed)"
);
}
}
// We want to keep the logs cache even if the level changes,
// so we don't clear it here. The cache will be cleared only when the level changes
// and a new task is started. This allows us to keep logs from previous levels
// even if the level changes during monitoring.
// Clear logs cache when level changes to ensure fresh data
// if level_changed {
// let mut current = self.current.write().await;
// current.logs.clear();
// current.level = filter_level.clone();
// current.mark_fresh();
// logging!(
// info,
// Type::Ipc,
// true,
// "LogsMonitor: Cleared logs cache due to level change to '{}'",
// filter_level
// );
// }
// Update current monitoring level
{
let mut current_level = self.current_monitoring_level.write().await;
*current_level = Some(filter_level.clone());
}
let monitor_current = Arc::clone(&self.current);
let task = AsyncHandler::spawn(move || async move {
loop {
// Get fresh IPC path and client for each connection attempt
let (_ipc_path_buf, client) = match Self::create_ipc_client() {
Ok((path, client)) => (path, client),
Err(e) => {
logging!(error, Type::Ipc, true, "Failed to create IPC client: {}", e);
tokio::time::sleep(Duration::from_secs(2)).await;
continue;
}
};
let url = if filter_level == "all" {
"/logs".to_string()
} else {
format!("/logs?level={filter_level}")
};
logging!(
info,
Type::Ipc,
true,
"LogsMonitor: Starting stream for {}",
url
);
let _ = client
.get(&url)
.timeout(Duration::from_secs(30))
.process_lines(|line| {
Self::process_log_line(line, Arc::clone(&monitor_current))
})
.await;
// Wait before retrying
tokio::time::sleep(Duration::from_secs(2)).await;
}
});
// Store the task handle
{
let mut handle = self.task_handle.write().await;
*handle = Some(task);
}
logging!(
info,
Type::Ipc,
true,
"LogsMonitor: Started new monitoring task for level: {:?}",
level
);
}
pub async fn stop_monitoring(&self) {
// Stop monitoring task but keep logs
{
let mut handle = self.task_handle.write().await;
if let Some(task) = handle.take() {
task.abort();
logging!(
info,
Type::Ipc,
true,
"LogsMonitor: Stopped monitoring task"
);
}
}
// Reset monitoring level
{
let mut monitoring_level = self.current_monitoring_level.write().await;
*monitoring_level = None;
}
}
fn create_ipc_client() -> Result<
(std::path::PathBuf, kode_bridge::IpcStreamClient),
Box<dyn std::error::Error + Send + Sync>,
> {
use kode_bridge::IpcStreamClient;
let ipc_path_buf = ipc_path()?;
let ipc_path = ipc_path_buf.to_str().ok_or("Invalid IPC path")?;
let client = IpcStreamClient::new(ipc_path)?;
Ok((ipc_path_buf, client))
}
fn process_log_line(
line: &str,
current: Arc<RwLock<CurrentLogs>>,
) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
if let Ok(log_data) = serde_json::from_str::<LogData>(line.trim()) {
// Server-side filtering via query parameters handles the level filtering
// We only need to accept all logs since filtering is done at the endpoint level
let log_item = LogItem::new(log_data.log_type, log_data.payload);
AsyncHandler::spawn(move || async move {
let mut logs = current.write().await;
// Add new log
logs.logs.push_back(log_item);
// Keep only the last 1000 logs
if logs.logs.len() > 1000 {
logs.logs.pop_front();
}
logs.mark_fresh();
});
}
Ok(())
}
pub async fn current(&self) -> CurrentLogs {
self.current.read().await.clone()
}
pub async fn clear_logs(&self) {
let mut current = self.current.write().await;
current.logs.clear();
current.mark_fresh();
logging!(
info,
Type::Ipc,
true,
"LogsMonitor: Cleared frontend logs (monitoring continues)"
);
}
pub async fn get_logs_as_json(&self) -> serde_json::Value {
let current = self.current().await;
// Simply return all cached logs since filtering is handled by start_monitoring
// and the cache is cleared when level changes
let logs: Vec<serde_json::Value> = current
.logs
.iter()
.map(|log| {
serde_json::json!({
"type": log.log_type,
"payload": log.payload,
"time": log.time
})
})
.collect();
serde_json::Value::Array(logs)
}
}
pub async fn start_logs_monitoring(level: Option<String>) {
LogsMonitor::global().start_monitoring(level).await;
}
pub async fn stop_logs_monitoring() {
LogsMonitor::global().stop_monitoring().await;
}
pub async fn clear_logs() {
LogsMonitor::global().clear_logs().await;
}
pub async fn get_logs_json() -> serde_json::Value {
LogsMonitor::global().get_logs_as_json().await
}